首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9051篇
  免费   549篇
  国内免费   745篇
化学   4664篇
晶体学   172篇
力学   425篇
综合类   37篇
数学   129篇
物理学   4918篇
  2023年   56篇
  2022年   134篇
  2021年   148篇
  2020年   211篇
  2019年   197篇
  2018年   241篇
  2017年   232篇
  2016年   359篇
  2015年   304篇
  2014年   362篇
  2013年   498篇
  2012年   930篇
  2011年   903篇
  2010年   686篇
  2009年   775篇
  2008年   602篇
  2007年   687篇
  2006年   457篇
  2005年   351篇
  2004年   367篇
  2003年   274篇
  2002年   305篇
  2001年   179篇
  2000年   155篇
  1999年   139篇
  1998年   149篇
  1997年   97篇
  1996年   90篇
  1995年   67篇
  1994年   49篇
  1993年   48篇
  1992年   34篇
  1991年   26篇
  1990年   39篇
  1989年   24篇
  1988年   29篇
  1987年   13篇
  1986年   19篇
  1985年   16篇
  1984年   12篇
  1983年   3篇
  1982年   13篇
  1981年   13篇
  1980年   9篇
  1979年   13篇
  1978年   5篇
  1976年   4篇
  1975年   3篇
  1974年   4篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
对微结构的制作、微装配系统进行了研究. 采用飞秒激光双光子聚合微加工技术制作有底座、精细的三维立体“拱形”微结构, 其高250μm、长300μm、厚50μm. 将此微结构与实验室自主搭建的二维微装配平台相结合, 利用自主编程的人机交互界面驱动步进电机, 远程操控微装配设备; 将荧光闪烁陶瓷粉末装配到微结构中, 对装配后的微结构进行荧光光谱表征发现, 纯荧光粉末和微结构中的荧光粉末的发射光谱在测量误差范围内基本一致, 表明荧光粉末的光学性质未发生改变. 利用该装置可以将各类微纳米级材料和微结构进行装配, 形成含有不同材料的微结构系统.  相似文献   
2.
3.
Since 1970s, magnetic field effects (MFEs) on photogenerated radical pairs have been the centre of focus in the field of spin chemistry. The MFE attributes to quantum mechanical interconversion between the singlet and triplet radical pair states and subsequent spin-selective recombination reactions. In this New View article, the author picks up two hot topics studied during the last two decades, which are (i) so-called low field effect (LFE) and (ii) 2J-resonance MFE on fixed distance donor–acceptor linked molecules. In both of the topics, quantum mechanical explanations are given referring to recent reports, and some novel calculations have been carried out for bridging theoretical and experimental data for long-lived radical pairs. For the first topic, time domain calculations of coherent state mixing have been carried out for elucidation of hyperfine (HF) structure dependence of the LFE. For the second topic, Monte Carlo simulations of the torsional motion of polyaromatic linker unit have been carried out for the demonstration of fast decoherence in such rigid molecules. From these considerations, future possibilities of MFE studies on photo-functional materials and biomolecules have been indicated.  相似文献   
4.
The paper analyses the hydrodynamic instability of a flame propagating in the space between two parallel plates in the presence of gas flow. The linear analysis was performed in the framework of a two-dimensional model that describes the averaged gas flow in the space between the plates and the perturbations development of two-dimensional combustion wave. The model includes the parametric dependences of the flame front propagation velocity on its local curvature and on the combustible gas velocity averaged along the height of the channel. It is assumed that the viscous gas flow changes the surface area of the flame front and thereby affects the propagation velocity of the two-dimensional combustion wave. In the absence of the influence of the channel walls on the gas flow, the model transforms into the Darrieus–Landau model of flame hydrodynamic instability. The dependences of the instability growth rate on the wave vector of disturbances, the velocity of the unperturbed gas flow, the viscous friction coefficients and other parameters of the problem are obtained. It is shown that the viscous gas flow in the channel can lead, in some cases, to a significant increase in instability compared with a flame propagating in free space. In particular, the instability increment depends on the direction of the gas flow with respect direction of the flame propagation. In the case when the gas flow moves in the opposite direction to the direction of the flame propagation, the pulsating instability can appear.  相似文献   
5.
Two new divalent copper (C1) and zinc (C2) chelates having the formulae [M(PIMC)2] (where M = Cu(II), Zn(II) and PIMC = Ligand [(E)-3-(((3-hydroxypyridin-2-yl)imino)methyl)-4H-chromen-4-one] were obtained and characterized by several techniques. Structures and geometries of the synthesized complexes were judged based on the results of alternative analytical and spectral tools supporting the proposed formulae. IR spectral data confirmed the coordination of the ligands to the copper and zinc centers as monobasic tridentate in the enol form. Thermal analysis, UV-Vis spectra and magnetic moment confirmed the geometry around the copper center to be tetrahedral, square pyramidal and octahedral. Study of the binding ability of the synthesized compounds with Circulating tumor DNA (CT-DNA) bas been evaluated applying UV-Vis spectral titration and viscosity measurements. The copper and zinc oxides were achieved from the copper and zinc nano-particles structures Schiff base complexes as the raw material after calcination for 5 hr at 600°C. On the other hand, synthesized of C1 and C2 NPs were used as suitable precursors to the preparation of CuO and ZnO NPs. Finally, the synthesized of the two complexes exhibited enhanced activity against the tested bacterial (Staphylococcus aureus and Escherichia Coli) and fungal strains (Candida albicans and Aspergillus fumigatus) as compared to HPIMC. Among all these synthesized compounds, C1 exhibits good cleaving ability compared to other newly synthesized C2.  相似文献   
6.
The Fe-based transition metal oxides are promising anode candidates for lithium storage considering their high specific capacity, low cost, and environmental compatibility. However, the poor electron/ion conductivity and significant volume stress limit their cycle and rate performances. Furthermore, the phenomena of capacity rise and sudden decay for α-Fe2O3 have appeared in most reports. Here, a uniform micro/nano α-Fe2O3 nanoaggregate conformably enclosed in an ultrathin N-doped carbon network (denoted as M/N-α-Fe2O3@NC) is designed. The M/N porous balls combine the merits of secondary nanoparticles to shorten the Li+ transportation pathways as well as alleviating volume expansion, and primary microballs to stabilize the electrode/electrolyte interface. Furthermore, the ultrathin carbon shell favors fast electron transfer and protects the electrode from electrolyte corrosion. Therefore, the M/N-α-Fe2O3@NC electrode delivers an excellent reversible capacity of 901 mA h g−1 with capacity retention up to 94.0 % after 200 cycles at 0.2 A g−1. Notably, the capacity rise does not happen during cycling. Moreover, the lithium storage mechanism is elucidated by ex situ XRD and HRTEM experiments. It is verified that the reversible phase transformation of α↔γ occurs during the first cycle, whereas only the α-Fe2O3 phase is reversibly transformed during subsequent cycles. This study offers a simple and scalable strategy for the practical application of high-performance Fe2O3 electrodes.  相似文献   
7.
Accurate determination of Sarcosine (SAR) in urine with high sensitivity and selectivity is important, because it was recently recommended as a prospective biomarker for prostate cancer (PCa) and significant for the early identification of PCa. In this study, an electrochemical sensor based on Fe3O4 incorporated metal–organic frameworks (MOFs) @molecularly imprinted polymer (MIP) was constructed for SAR detection. Magnetic Fe3O4 nanoparticles embedded zeolitic imidazolate framework-8 (ZIF-8) was used as the support of MIP. MIP provides specific recognition sites for template molecules SAR and MOFs increase the rate of mass transfer and adsorption capacity due to the porous structure. The synthesized super-magnetic Fe3O4@ZIF-8@MIP was self-assembled onto an Au electrode in magnetic field and used as the sensing unit of electrochemical sensor. Cyclic voltammetry was used to monitor the electrochemical behavior, and the binding of SAR resulted in a reduction in the measured current. The results revealed a wide linear range from 1 to 100 pM towards trace SAR determination, with extremely low limit of detection down to 0.4 pM. In conclusion, the Fe3O4@ZIF-8@MIP based sensor provides a selective, sensitive, and convenient method for SAR diagnosis and other cancer marker detection.  相似文献   
8.
《Physics letters. A》2020,384(32):126832
We propose a novel method for detection of the faint machinery vibration at the nanometer resolution based on the spin magnetic resonant effect. A suspension magnet acts as a vibration sensor to transfer the vibration signals as the magnetic field fluctuation to excite the spin magnetic resonance. Due to the high sensitivity of the magnetic field of the nitrogen-vacancy center in diamond, the theoretical detection limit of mechanical vibration is as high as 5.7 nm, and the actual measurement resolution reached 12.8 nm, and proved the potential for further improvement to ∼pm resolution. The feasibility of this method is verified by dynamic tests. This method provides a novel approach for the detection of micro-mechanical vibrations.  相似文献   
9.
The formation of a current sheet in a weakly collisional plasma can be modelled as a finite-time singularity solution of magnetohydrodynamic equations. We use an exact self-similar solution to confirm and generalise a previous finding that, in sharp contrast to two-dimensional solutions in standard MHD, a finite-time collapse to a current sheet can occur in Hall MHD. We derive a criterion for the finite-time singularity in terms of initial conditions, and we use an intermediate asymptotic solution for the evolution of an axial magnetic field to obtain a general expression for the singularity formation time. We illustrate the analytical results by numerical solutions.  相似文献   
10.
A selective and sensitive method was developed based on dispersive micro‐solid‐phase extraction for the extraction of hydroquinone, resorcinol, pyrocatechol and phenol from water samples prior to high‐performance liquid chromatography with UV detection. SiO2, SiO2@MPTES, and SiO2@MPTES@Au nanoparticles (MPTES = 3‐mercaptopropyltriethoxysilane) were synthesized and characterized by scanning electronic microscopy, thermogravimetric analysis, differential thermogravimetric analysis, and infrared spectroscopy. Variables such as the amount of sorbent (mg), pH and ionic strength of sample the solution, the volume of eluent solvent (μL), vortex and ultrasonic times (min) were investigated by Plackett–Burman design. The significant variables optimized by a Box–Behnken design were combined by a desirability function. Under optimized conditions, the calibration graphs of phenol and dihydroxybenzenes were linear in a concentration range of 1–500 μg/L, and with correlation coefficients more than 0.995. The limits of detection for hydroquinone, resorcinol, pyrocatechol, and phenol were 0.54, 0.58, 0.46, and 1.24 μg/L, and the limits of quantification were 1.81, 1.93, 1.54, and 4.23 μg/L, respectively. This procedure was successfully employed to determine target analytes in spiked water samples; the relative mean recoveries ranged from 93.5 to 98.9%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号